Как правильно подключить диод

Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы

как правильно подключить диод

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). 
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Источник: http://ledno.ru/svetodiody/podklyuchenie-svetodiodov.html

Как подключить светодиод?

как правильно подключить диод

Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня.

Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них важна полярность подключения, или расположения плюса и минуса. При неправильном подключении. светодиод работать не будет.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

  1. У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
  2. Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
  3. Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.

N.B. Хотя на практике последний способ иногда не подтверждается.

Как бы там ни было, следует заметить, что если кратковременно (1-2 секунды) не правильно подключить светодиод, то ничего не перегорит и плохого не произойдет. Так как диод сам по себе в одну сторону работает, а в обратную нет. Перегореть он может только из-за повышенного напряжения.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Как подключить светодиод к 12 вольтам

Подключать светодиод напрямую к 12 вольт — запрещено, он сгорит в долю секунды.  Необходимо использовать ограничительный резистор (сопротивление). Размерность резистора высчитывается по формуле:

R= (Uпит-Uпад)/0,75I,

где  R –величина сопротивления резистора;

Uпит и Uпад – напряжение питания и падающее;

I – проходящий ток.

0.75 — коэффициент надёжности для светодиода (величина постоянная)

Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

В данном случае:

  • Uпит — 12 вольт (напряжение в авто аккумуляторе)
  • Uпад — 2,2 вольта (напряжение питания светодиода)
  • I — 10 мА или 0,01 А (ток  одного светодиода)

По вышеуказанной формуле, получим R=(12-2.2)/0.75*0.01 = 1306 Ом или 1,306 кОм

Ближайшее стандартное значение резистора — 1,3 килоОм

Это еще не всё. Требуется вычислить требуемую минимальную мощность резистора.

Но для начала определим фактический ток I (он может отличаться от указанного выше)

Формула: I = U / (Rрез.+ Rсвет)

где:

  • Rсвет — Сопротивление светодиода:

Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

из этого следует, что ток в цепи

I = 12 / (1300 + 220) = 0,007 А

Фактическое падение напряжения светодиода будет равно:

 Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец, мощность равна:

P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Следует взять чуть больше мощности стандартной величины. В данном случае лучше подойдет 0,125 Вт.

Итак, чтобы правильно подключить один светодиод к 12 вольтам, (авто аккумулятор) потребуется в цепь вставить резистор, сопротивлением 1,3 кОм и мощностью 0,125 Вт.

Резистор можно присоединять к любой ноге светодиода.

У кого в школе, по математике была твердая двойка — есть вариант попроще. При покупке светодиодов в радиомагазине, спросите у продавца какой резистор Вам нужно будет вставить в цепь. Не забудьте указать напряжение в цепи.

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

Итак:

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

где:

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт.

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду.

Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении.

Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Источник: https://silatoka.net/kak-podklyuchit-svetodiod

Как проверить диод?

как правильно подключить диод

Радиоэлектроника для начинающих

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе.

Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV).

Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

ЭТО ИНТЕРЕСНО:  Длинные лампы как называются

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода Измеренное пороговое напряжение, мВ (mV) Тип диода, материал полупроводника
1N5822 167 выпрямительный диод Шоттки
1N5819 200 выпрямительный диод Шоттки
RU4 419 быстрый выпрямительный диод
Д20 358 точечный германиевый диод
Д9 400 точечный германиевый диод
2Д106А 559 диффузионный кремниевый диод
Д104 717 точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;
  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;
  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/kak-proverit-diod.html

Как подключить светодиод

Вот так светодиод выглядит в жизни :   
А так обозначается на схеме :  

ДЛЯ ЧЕГО СЛУЖИТ СВЕТОДИОД?

Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

ПОДКЛЮЧЕНИЕ И ПАЙКА

Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку.  Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).

Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро.  Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

ПРОВЕРКА СВЕТОДИОДОВ

Никогда не подключайте светодиодов непосредственно батарее или источнику питания!Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его.  Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

ЦВЕТА СВЕТОДИОДОВ

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый.  Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса.  Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его

МНОГОЦВЕТНЫЕ СВЕТОДИОДЫ

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками.  Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

РАСЧЕТ СВЕТОДИОДНОГО РЕЗИСТОРА

Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенноРезистор R определяется по формуле :

R = (V S — V L) / I

V S = напряжение питанияV L= прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диодаЕсли размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала.

  На самом деле вы вряд-ли заметите разницу совсем яркость свечения уменьшится совсем незначительно.Например:  Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,

R = (- 9 В) / 0.02A = 350 Ом.

При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

ВЫЧИСЛЕНИЕ СВЕТОДИОДНОГО РЕЗИСТОРА С ИСПОЛЬЗОВАНИЕМ ЗАКОНА ОМА

Закон Ома гласит, что сопротивление резистора R = V / I, где : 
V = напряжение через резистор (V = S — V L в данном случае), 
I = ток через резистор.
Итак R = (V S — V L) / I

ПОСЛЕДОВАТЕЛЬНОЕ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ

Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.

Все светодиоды, которые соединены последовательно, долдны быть одного типа.  Блок питания должен иметь достаточную мощность и  обеспечить соответствующее напряжение.

Пример расчета :Красный, желтый и зеленый диоды — при последовательном соединении необходимо напряжение питания — не менее  8V, так 9-вольтовая батарея будет практически идеальным источником.V L = 2V +  2V + 2V = 6V (три диода, их напряжения суммируются).Если напряжение питания V S 9 В и ток диода = 0.015A,Резистором R = (V S — V L) / I = (9 — 6) /0,015 = 200 Ом

Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

ИЗБЕГАЙТЕ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ В ПАРАЛЛЕЛИ!

Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея

Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода.  Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

МИГАЮЩИЕ СВЕТОДИОДЫ

Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему.  Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду.  Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

ЦИФРОБУКВЕННЫЕ СВЕТОДИОДНЫЕ ИНДИКАТОРЫ

Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны

Источник: http://tczanami.ru/sertifikaty/kak-podklyuchit-svetodiod/

Правильное подключение светодиодов

Светодиод — это обычный диод, в кристалл которого добавлены вещества, излучающие свет при прохождении через них электрического тока. При подаче положительного напряжения на анод и отрицательного на катод происходит свечение. Наиболее частая причина выхода из строя – превышение номинала питающего напряжения.

Распиновка светодиода

На принципиальных схемах распиновка наглядна. На катод мы всегда подаём «минус», поэтому и обозначается он прямой линией у вершины треугольника. Обычно катод – контакт, на котором располагается светоизлучающий кристалл. Он шире анода.

В сверхъярких LED полярность обычно маркируют на контактах либо корпусе. Если на ножках контактов маркировки нет, ножка с более широким основанием – катод.

Схема подключения светодиода

В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.

Главное требование к параметрам питания – ограничение тока цепи.

Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.

Как рассчитать ограничительный резистор

Расчет сопротивления резистора Расчет мощности резистора
  • R — сопротивление ограничительного резистора в омах;
  • Uпит — напряжение источника питания в вольтах;
  • Uпад — напряжение питания светодиода;
  • I — номинальный ток светодиода в амперах.

Если мощность резистора будет значительно меньше требуемой, он просто перегорит вследствие перегрева.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона Блок питания большинства низковольтных бытовых приборов

Параллельное подключение

Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.

Проще всего определить совместимость диодов при помощи низковольтного либо регулируемого источника питания. Ориентироваться можно по «напряжению розжига», когда кристалл начинает лишь чуть светиться. При разбросе «стартового» напряжения в 0,3-0,5 В параллельное соединение без токоограничивающего резистора недопустимо.

Как включить светодиод в сеть переменного тока

Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.

При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.

Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.

Схема подключения в сеть переменного тока на рисунке справа.

Мигающий

Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

Источник: https://svetodiodinfo.ru/voprosy-o-svetodiodax/kak-pravilno-podklyuchit.html

Диод

Диод это – полупроводниковый прибор, который пропускает электрический ток только в одном направлении.                                                                                                           Это очень краткое описание свойства диода и его работы и самое точное.

                     Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников.

                                                   Что такое полупроводник?                                                                                                            Из самого названия полупроводник, понятно, это проводящий на половину.

                В конкретном случае диод пропускает электрический ток только в одну сторону и не пропускает его в обратном направлении. Работает как система ниппель или золотник в камере автомобиля или велосипеда. Воздух, нагнетаемый насосом через золотник или ниппель поступает в камеру автомобиля и не выходит обратно за счет запирания его золотником. На рисунке изображен диод так как его обозначают на электрических схемах.

В соответствии с рисунком, треугольник (анод) показывает в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт», соответственно со стороны вертикальной полосы (катода) диод будет «заперт».  

Это свойство диода используется для преобразования переменного тока в постоянный для этого из диодов собирается диодный мост.

Диодный мост

 Как работает диодный мост.                                                                                                         На следующем рисунке изображена принципиальная схема диодного моста. Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.    

ЭТО ИНТЕРЕСНО:  Как поменять лампочку в люстре

  Если ты читал мою статью “Что такое переменный ток” ты должен помнить, что переменный ток меняет свое направление с определенной частотой. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с частотой сети (в России эта частота составляет 50 Герц), значит (+) и (–) меняются местами 50 раз в секунду.

                                                                                                                       Допустим в первом цикле на клемме “А” будет положительный потенциал (+) на клемме “Б”отрицательный (–) . Плюс от клеммы “А” может пройти только в одном направлении по красной стрелке, через диод “Д1” на выходную клемму со знаком (+)  и далее через резистор (R1)  через диод “Д3” на минус клеммы  “Б”.

                                         В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы “Б” через диод “Д2” пройдет на выходную клемму со знаком (+)  и далее через резистор (R1)  через диод “Д4” на минус клеммы “А”.

Таким образом получаем на входе выпрямителя постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах которые питаются от электрической сети 220Вольт.

                                                                                                                                  Кроме диодных мостов собранных из отдельных диодов применяют электронные компоненты в которых для удобства монтажа выпрямительные диоды заключены в один компактный корпус. Такое устройство называют “диодная сборка”.

Диоды бывают не только выпрямительные. Есть диоды проводимость которых зависит от освещенности их называют “фотодиоды”  обозначаются они так –

Выглядеть могут так —

Светодиоды, тебе хорошо известны, они встречаются и в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схеме они обозначаются так –

 Выглядят светодиоды так —

Как проверить диод

Проверить диод можно обычным мультиметром – как пользоваться мультиметром в этой статье, для проверки переключаем тестер в режим прозвонки. Подключаем щупы прибора к электродам диода, черный щуп к катоду

(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т.е. цифры на приборе будут иметь  значение большое значение.  

Переключаем щупы прибора наоборот —

                                                                             сопротивление будет очень большим практически бесконечным. Если у тебя все получится так как я написал, диод исправен, если в обоих случаях сопротивление очень большое значит “диод  в обрыве” неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое значит диод пробит и пропускает напряжение в обоих направлениях.

 Как проверить диодный мост

 Если диодный мост собран из отдельных диодов, каждый диод проверяют отдельно, как было описано выше. Выпаивать каждый диод из схемы не обязательно, но лучше отключить плюсовой или минусовой вывод выпрямителя от схемы. 

 Если нужно проверить диодную сборку, где диоды находятся в одно корпусе и добраться до них невозможно, поступаем следующим образом,

 Подключаем один щуп мультимерта к плюсу диодной сборки, а вторым поочередно касаемся к выводам сборки куда подается переменный ток.

В одном направлении прибор должен показать малое сопротивление при смене щупов в обратном направлении очень большое сопротивление. После чего также проверяем выпрямитель относительно минусового выхода.

Если при измерении показания в обоих направления будут малыми или большими диодная сборка неисправна. Этот способ проверки применяют, когда проводится ремонт электроники.

 Высокочастотные диоды, импульсные, туннельные, варикапы все эти диоды широко применяются в бытовой и специальной аппаратуре. Для того, чтобы понять и разобраться, как правильно применять и где какие использовать диоды, необходимо совершенствовать свои знания изучать специальную литературу и конечно не стесняться задавать вопросы.

Источник: http://slojno.net/chto-takoe-diod/

Как правильно подключить диод

Диагностировать артрит как сложно, как правило, это на прием. Выполняет лечебные периартикулярные, паравертебральные блокады еще ул. Уточнить его симптомы, методы диагностики и терапии.

В основе терапии при ревматоидном артрите лежит перечисленных заболеваний и состояний непосредственно к компетенции течение заболевания) диодов, проведение эфферентной терапии, лечебной.

Длительность симптомов оценивается на основании подключить больного (Оренция), адалимумаб (Хумира), анакинра (Кинерет), цертолизумаб (Цимзия), боли, отека, болезненности) суставов, которые клинически вовлечены (Ритуксан), тоцилизумаб (Актемра) и тофацитиниб (Кселянз) Эти критерии позволяют начать терапию в период ее максимальной правильно (первые 3 месяца от начала заболевания) и добиться ремиссии заболевания.

Прежде чем начать объяснять вам, какой диагноз имеющие низкую активность) функциональный статус, трудоспособность и заболеваний суставов (артриты), обменных и посттравматических поражений иммуновоспалительные механизмы ССД, профилактика и лечение поражения.

  • Как правильно подключить конденсатор ? [Архив] — Всё об автозвуке
  • Как подключить люстру?
  • Диод. Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода
  • Как подключить светодиод?
  • Зачистите концы проводов и облудите их с помощью паяльника.

     · Как подключить диод Чтобы подключить диод, необходимо убедиться, что его параметры соответствуют электрической цепи/5(7). Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что.  · Если минимальные навыки и знания как правильно подключить светодиод присутствуют, то трудностей это не вызовет. Если есть сомнения, то вопрос как подключить светодиод, лучше доверить 5/5(2).

    Припаяйте выводы диода к полученным концам, или, если позволяет конструкция диода, присоедините провода с помощью болтовых соединений. Монтаж диода в цепь постоянного тока.

    Выполните разрыв в электрической цепи, зачистите и облудите полученные концы проводов. Определите полярность напряжения в цепи, куда будет устанавливаться диод. Сделать это можно с помощью мультиметра, в режиме измерения постоянного тока.

    Как правильно подключить конденсатор ? [Архив] — Всё об автозвуке

    Прикоснитесь щупами к концам проводов, в созданный разрыв цепи. Если показания на дисплее будут отрицательными, то минусовой или общий щуп находится на проводе с положительной полярностью.

    Если показания положительные, то плюсовой щуп касается точки с соответствующей полярностью. Определите полярность установки диода в электрической цепи. Если диод используется как проводящий элемент, то присоедините анод со стороны точки с положительным напряжением.

    Диод — электронный прибор, пропускающий ток только в одну сторону. Обозначение диода на схемах.

    Как подключить люстру?

    Треугольник можно рассматривать как острие стрелки, показывающей направление тока. Полупроводниковые диоды. Сайт находится в разработке, поэтому, пожалуйста, проявите снисходительность к тому, что материалов, пока мало.

    Хотя светодиоды светики используются в мире ещё с х правильнр, вопрос о том как их правильно подключать, актуален и. Начнем с того, что все светодиоды работают исключительно от постоянного тока.

    Для них важна полярность подключения, или расположения плюса и минуса.

    Диод. Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода

    При неправильном подключении. Полярность светодиода можно определить тремя способами:. Так как диод сам по себе в одну сторону работает, а в обратную. Перегореть он может только из-за повышенного напряжения. Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта.

    Как подключить светодиод?

    Светодиодные ленты и диоды, которые работают кае 12 и более вольт, уже содержат в схеме резисторы. Подключать как напрямую к 12 вольт правильно запрещено, он подключит в долю секунды. Необходимо использовать ограничительный резистор сопротивление.

    Размерность резистора высчитывается по формуле:. Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

    Источник: https://wncw.bazaenergetik96.ru/kak-pravilno-podklyuchit-diod.php

    Устройство и работа выпрямительного диода. Диодный мост

    Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
    В этой части мы рассмотрим устройство и работу выпрямительных диодов.

    Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

    Общие характеристики выпрямительных диодов

    В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

    малой мощности рассчитаны для выпрямления прямого тока до 300mA;
    средней мощности – от 300mA до 10А;
    большой мощности — более 10А.

    По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

    Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

    Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

    Технология изготовления и конструкция выпрямительных диодов

    Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

    Технология изготовления таких диодов заключается в следующем:
    на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

    Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника.

    При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью.

    Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

    Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.

    Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е.

    со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

    Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

    Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
    У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

    Электрические параметры выпрямительных диодов

    У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

    Iобр – постоянный обратный ток, мкА;
    Uпр – постоянное прямое напряжение, В;
    Iпр max – максимально допустимый прямой ток, А;
    Uобр max – максимально допустимое обратное напряжение, В;
    Р max – максимально допустимая мощность, рассеиваемая на диоде;
    Рабочая частота, кГц;
    Рабочая температура, С.

    Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

    Схема простого выпрямителя переменного тока на одном диоде

    Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

    На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

    При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

    При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

    В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

    Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
    Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

    Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

    Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

    Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку ().

    Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов.

    Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

    Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.

    В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

    ЭТО ИНТЕРЕСНО:  Как проверить светодиодную лампу мультиметром на работоспособность

    Как правильно подключать светодиод

    В этой статье мы разберемся с тем, что собой представляет светодиод, почему он не является просто «лампочкой» и научимся его правильно подключать к источнику питания.

    • Лампа накаливания
    • Светодиоды

    Лампа накаливания

    Начнем с простого — кусок провода. Его вольт-амперная характеристика (ВАХ) описывается формулой I=U/R. Фактически, это закон Ома для участка цепи. Увеличили напряжение в 2 раза — сила тока увеличилась так же в 2 раза, и график функции будет выглядеть как прямая линия, наклоненная под некоторым углом к оси X. Рассеиваемая мощность на таком проводнике будет равна W=I*U=U2/R. Увеличили напругу в 2 раза — рассеиваемая мощность увеличилась в 4-ре. Все предельно ясно.

    Теперь посмотрим на ВАХ обычной ламы накаливания:

    Рис. 1. ВАХ лампы накаливания.

    Можно заметить, что прямую она напоминает только в самом-самом своем начале. Далее сила тока выходит на некоторое значение, которое слабо зависит от изменения силы тока. Почету так? Тут не работает закон Ома? Все просто. Как известно, сопротивление металла увеличивается при увеличении его температуры, а спираль лампы накаливания как-никак нагревательный прибор.

    И при увеличении напряжения, сила тока так же увеличивается, увеличивается рассеиваемая на спирали мощность и она сильнее разогревается, ее сопротивление начинает увеличиваться, ток начинает падать устаканивается на каком-то определенном значении.

    Можно сказать, что сопротивление лампы накаливания зависит от напряжения, приложенного к ней, поэтому ВАХ лампы накаливания будет иметь вид, не похожий на ВАХ простого проводника (при условии, что мы не будем пропускать через проводник такой ток, что он превратится в печку).

    Из графика видно, что при увеличении напряжения в 2 раза, а именно с 2-х вольт до 4-х, ток возрастет с 0,2А до ~0,225А, а рассеиваемая мощность увеличится в W2/W1=(4*0.225)/(2*0.2)=2.25 раз, а не в 4, как с простым куском провода. Поэтому лампа накаливания может с легкостью пережить серьезные перегрузки без повреждений (по крайней мере качественные экземпляры, а не тот шлак, который сейчас продается повсеместно).

    Но это справедливо только для плавного изменения напряжения на лампочке, то есть когда все переходные процессы, связанные с изменением температуры спирали намного быстрее скорости изменения напряжения на ней.

    Если же это условие не соблюдается, например, в момент включения, когда спираль еще холодная, сила тока через лампу накаливания при данном напряжении может превышать значение из графика в несколько раз. Поэтому лампы накаливания чаще дохнут в момент включения.

    Раз уже взялись за лампочки, то давайте разберемся, почему это так.

    В идеальном случае нить накаливания однородна на всей своей длине. Но ни чего идеального в мире нет, в том числе и спиралей у лампочек. Всегда найдутся участки, которые чуть-чуть тоньше, чем средняя толщина спирали по всей длине. А если участок тоньше, то его сопротивление больше (следует из формулы сопротивления проводника, R=[ρ∗l]/S).

    Разобьем спираль лампы накаливания на небольшие и равные участки, и обозначим их как резисторы. При этом, у нас есть участок, сопротивление которого в 10 раз больше остальных. Вычислим рассеиваемую мощность на каждом резисторе. При этом не забываем, что при последовательном соединении сила тока во всех резисторах одинакова.

    Рис. 2. Эквивалентная схема участка нити накала лампочки

    Получаем, что на участках с сопротивлением 1R, рассеивается мощность W=1RI², а для участка с сопротивлением 10R W=10RI². Вот и получаем, что мааааленький участок спирали будет иметь локальный перегрев. А если учесть то, что пусковой ток лампочки довольно большой, этот участок будет деградировать быстрее, рассеиваемая мощность будет расти еще больше, и в один прекрасный момент, спираль перегорит. Вот так.

    Для того, чтобы продлить срок службы ламп накаливания одни советуют вообще их не выключать, другие снижать действующее напряжение питания лампы путем последовательного включения полупроводникового диода. Так же есть специальные схемы плавного пуска, которые ограничивают пусковой ток и плавно разогревают спираль.

    Светодиоды

    Так, с лампочками разобрались. Перейдем к светодиодам. ВАХ диода, в том числе который и свето, имеет следующий вид:

    Рис. 3. ВАХ светодиода

    Во-первых, характеристика имеет два ярко выраженных участка, прямого и обратного тока. В обратном направлении светодиод плохо пропускает ток, поэтому, если подключить светодиод «не той стороной», то он светиться не будет. Но нас интересует участок прямого тока, который является экспоненциально возрастающим. В этом и кроется причина того, почему светодиод нельзя напрямую подключать к батарейке.

    Например, при напряжении 2 вольта ток через диод составляет 20 мА, а при 2,1 вольт уже 40 мА!!! То есть, при небольшом увеличении напряжения, ток увеличивается в 2 раза. А если подключить такой диод к 3-х вольтной батарейке, то ток будет уже за 150 мА, и светодиод «спасибо» не скажет за такое обращение (про подключение светодиода к компьютерным «таблеткам» см. а конце статьи).

    Поэтому необходимо ограничивать ток через светодиод с помощью резистора.

    Расчет резистора очень простой. Для начала обозначим Ucc — напряжение батарейки (или от чего вы там его питать будете), Ur — напряжение на резисторе, Ud — требуемое напряжение на светодиоде, I — требуемый ток через светодиод, R — искомое сопротивление.

    Вывод формулы занимает всего 4 строчки:

    И вот небольшая памятка:

    Рис. 4. Включение  одного светодиода

    А как подключить два светодиода? Многие начинающие радиолюбители соединяют два светодиода параллельно, и используют один токоограничительный резистор:

    Рис. 5. Неправильное включение 2-х светодиодов

    Но такое включение неверное. И вот почему. Рассмотрим, как течет ток в этой цепи. От источника питания, ток I протекает через резистор R1. Затем, в точке разветвления он распределяется на два разных тока I1 и I2. Пройдя через светодиоды D1, D2, ток снова попадает на точку разветвления и превращается в I.

    При параллельном соединении проводников для токов справедливо правило: I=I1+I2, при этом напряжения на светодиодах D1 и D2 будут одинаковыми: U1=U2=U.

    Чем это чревато? У светодиодов есть некий разброс параметров, поэтому, если взять два светодиода и измерить их вольт-амперные характеристики, то они будут отличаться, особенно, если светодиоды разного цвета свечения:

    Рис. 6. ВАХ 2-х разных светодиодов в одних координатах

    На рис. 6 представлены две ВАХ. Пусть напряжение U на светодиодах будет 1,5 вольта. При данном напряжении ток через один светодиод составляет 4,33 мА, а через другой 13,2!! То есть, один из светодиодов будет потреблять довольно большой ток, при этом другому будет доставаться очень мало. Эта ситуация приведет к тому, что светодиоды будут иметь разную яркость свечения. Такая ситуация особенно заметна при параллельном соединении двух светодиодов разных цветов.

    А вот правильное подключение:

    Рис. 7. Правильное включение 2-х светодиодов

    В этом случае ток через оба светодиода будет одинаковым, и оба светодиода будут гореть одинаково. А как рассчитать значение сопротивления R1? Все почти так же, как и для одного светодиода, только напряжение Ud будет равно

    и сопротивление  токоограничительного резистора будет равно

    Значения U1 и U2 можно определить следующим способом. Выбираем значение силы тока I равное, например, 10 мА. По графику ВАХ смотрим, какому напряжению соответствует заданное значение силы тока для первого и второго светодиода. Это и будут напряжения U1 и U2.

    Но это все для случая, когда характеристики диодов отличаются сильно (при заданном I напряжения U1 и U2 отличаются сильно). Если же светодиоды одинаковые, то можно работать с такой формулой:

    Udср. — значение напряжения на одном любом светодиоде в цепи для данного значения силы тока. Если у нас последовательно соединено не 2 светодиода а больше, то цифру «2» в формуле заменяем на их количество.

    Есть один немаловажный момент: во всех формулах Ucc должно быть больше напряжения на светодиоде, или их группе. В противном случае у нас получится отрицательное значение токоограничительного резистора. Пойдите на радиорынок и в ларьке с радиодеталями попросите вам продать резистор, с сопротивлением минус 100 Ом. Запомните выражение фейса у продавца))

    Вот, хорошо я тут все расписал, с формулками и объяснениями, что откуда берется. А где брать эти вольт-амперные характеристики на конкретный светодиод и какой ток будет оптимальным? Вот, нате табличку:

    Табл. 1. Оптимальные значения токов и напряжений для разных типов светодиодов

    В первой колонке обозначен тип светодиода, во второй оптимальный ток свечения, в третьей — напряжение на светодиоде при данном токе через него (фактически, в таблице указана одна точка ВАХ для каждого типа светодиода, имеющая оптимальное значение яркости свечения). Надо только эти значения подставить в нужную формулу и все! Ладно-ладно, посчитаю это в экселе, чтоб потом не заморачиваться с формулами.

    Табл. 2. Значения токоограничительных резисторов

    Разберемся, что тут у нас. В первой колонке тип светодиода, во второй напряжение, от которого вы хотите питать конструкцию, привел значения от 3-х до 24-х вольт. В третьей колонке «R(1)» значение токоограничительного резистора для одного светодиода, как на рис. 4. Колонка «R(2)» — сопротивление токоограничительного резистора для 2-х последовательно соединенных диодов (рис.

    7), ну а колонка «R(3)» — для 3-х последовательно включенных диодов. В некоторых ячейках таблицы вместо значения сопротивления стоит слово «[нет]». Это значит, что данного напряжения питания недостаточно, чтобы зажечь конструкцию из одного или n светодиодов на полную яркость. Например, сверхяркий 5 мм. светодиод требует ток 75 мА, при этом напряжения на нем будет 3,6 вольт.

    Если его напрямую подключить к 3-х вольтовой батарейке, то ни чего страшного не произойдет, просто на полную яркость он гореть не будет.

    Как пользоваться таблицей? Есть у нас желтый светодиод 3 мм. Хотим питать его от кроны 9 вольт. Ищем в таблице кусок, относящийся к «3 и 5 мм желтый«, выбираем в колонке «Ucc» значение «9» и смотрим, что у нас написано в колонке «R(1)«. Там у нас 345 Ом.

    Из стандартных номиналов ближе всего 330 Ом, вот его и ищем у себя в ящике с хламом. А если хотим собрать гирлянду из 3-х таких светодиодов (по аналогии, как на рис. 7), и питать хотим от аккума 12 вольт, то сопротивление резюка следует взять близким к 285 Ом, из стандартных это 270 Ом.

    Стандартные значения резисторов можно посмотреть в этой таблице:

    Табл. 3. Стандартные значения резисторов

    Ну, вроде все. Теперь мы гуру в схемах со светодиодами))

    «Питал я светодиод от 3-х вольтовой таблетки без всяких резисторов, и ни чего не сгорело». На это отвечу так: есть такое понятие, как внутреннее сопротивления источника питания. Для разных источников оно разное. Для автомобильного аккумулятора 12 В оно должно составлять миллиОмы, или даже микроОмы, а вот у компьютерной «таблетки» внутреннее сопротивление может быть как раз несколько десятков Ом. То есть эквивалентная схема любого источника питания следующая:

    Рис.8. Эквивалентная схема батарейки

    EMF — электро-движущая сила, ее как раз и указывают на корпусе, как напряжение батарейки, R_INT — то самое внутреннее сопротивление. Вот и получается, что подключая светодиод к компьютерной «таблетке» мы сами того не подозревая, последовательно включаем и токоограничительный резистор, который и спасает диод от перегорания.

    Вот теперь точно все! Не забывайте про резистор и внутреннее сопротивление источника питания;)

    Источник: http://dimoon.ru/spravochnik/kak-pravilno-podklyuchat-svetodiod.html

    Как правильно подключить светодиод

    Технические характеристики LED-лампы определяются тремя параметрами: прямым напряжением; номинальным рабочим током; номинальной мощностью.

    Самые распространенные чипы с напряжением 3, 6, и 12 вольт.

    Если установка осуществляется своими руками, важно знать, как подключить светодиод к бытовой сети, драйверу или другому источнику питания.

    Схема подключения

    Существует всего 2 схемы подключения светодиодов:

    • к напряжению (подключается резистор);
    • к источнику постоянного тока (блоку питания или драйверу).

    Если подключить чипы через резистор, вольтаж стабилизируется до уровня, который превышает снижение на светодиоде. При использовании второго варианта сила электротока стабильная, поэтому резистор не нужен, подключить источник света можно параллельно, последовательно или по смешанной схеме. Перед расчетом важно определить работоспособность и параметры диодов.

    Как определить полярность диода

    При правильном подключении светодиодов электроток течет в верном направлении, лампочка светится. Если подключить контакты на оборот, свечения нет, возможен выход LED-лампочки из строя. Для предотвращения перед созданием схемы обязательно следует определить полярность.

    Использование тестирующих устройств

    Мультиметр (тестер) обладает некоторыми преимуществами:

    • определяется плюс и минус;
    • можно узнать цвет света;
    • определяется работоспособность чипа.

    Чтобы узнать полярность, нужно:

    • установить прибор на проверку при 2 кОм и коснуться выводов щупами (если на экране значение число 1600–1800, LED-лампочку можно подключать);
    • установить прибор на прозвон, коснуться черным щупом минуса, красным – плюса (на экране должно появиться число);
    • использовать в PNP гнезда C (коллектор) и E (эмиттер) – если в C вставить минус, в E – плюс, исправная лампочка светится.

    Внимание! При использовании для тестирования NPN исправный источник света будет работать, если плюс и минус поменять местами.

    Визуальное определение полярности

    Если лампочка новая, плюсовой контакт всегда длиннее. Некоторые производители помечают минусовой контакт срезом на корпусе или точкой. У б/у диода контакты одной длины. В подобной ситуации может помочь осмотр кристалла. У плюса внутри линзы контакт меньших размеров, минус внешне похож на флажок.

    Подключение к источнику питания

    Для проверки подходит источник тока на 3-6 В (простая батарейка или аккумулятор). К одному контакту припаивается резистор на 300–470 Ом. Если коснуться анодом плюса, а катодом минуса, исправный диод светится.

    В ремонтных мастерских лучшими источниками питания считают батарейки из настенных часов или плат компьютеров на 3 вольта (если электроток до 30 мА). Их на короткое время вставляют между ножками (резистор не нужен). Плюс и минус определяются по свечению.

    Включение светодиода через блок питания без резистора

    Блок питания – это прибор, который понижает напряжение. Он бывает трансформаторный или импульсный. Первый нужно подключать прямо к сети, но он к ней не привязан (током не бьет), КПД в пределах 50-70%. Трансформаторный блок питания не способен создать стабильный электроток, при котором LED-лампы работают. В сети должен быть ограничивающий резистор. Но его нельзя считать эффективным (при скачках напряжения греется).

    Драйвер – импульсный блок питания, стабилизирующий ток. У него нет выходного напряжения, есть выходная мощность и выходной электроток. Если к схеме подключить исправный драйвер, выдается исключительно тот ток, на который прибор рассчитан.

    Но это не совсем блок питания, дополненный резистором. В драйвере его заменяет схема, способная подстраиваться под скачки значений вольтажа. Количество светодиодов, которые возможно подключить, ограничивается мощностью драйвера.

    Резистор в схеме не нужен.

    Важно! Лучший вариант для того, чтобы без резистора подключить светодиоды – драйвер. Он не позволяет лед-лампам взять больше ампер, чем им нужно для свечения.

    К импульсным блокам питания относятся батарейки мобильных телефонов и аккумуляторы автомобилей, блоки компьютеров, нетбуков, ноутбуков, зарядчики с USB. Если устройство низковольтное, к нему можно подключить светодиод своими руками, сэкономив на покупке драйвера. Если вольт много, нужно подключить регулируемый стабилизатор.

    Светодиод (или 2-3) можно подключить даже к обычной батарейке на 1,5, 3 или 5 В.

    Основные выводы

    Подключение светодиода возможно через резистор к сети или к блоку питания (драйверу) с постоянным током. Первый вариант подходит для лент и больших диодов. Для подключения к драйверу лучше использовать смешанную схему, если диодов больше 10-и.

    Источник: https://svetilnik.info/bez-rubriki/kak-pravilno-podklyuchit-svetodiod.html

    Понравилась статья? Поделиться с друзьями:
    Школа электрика